LEARNING TO FEAR,
and to extinguish fear.

Ray Luo
RIKEN BSI, UCLA

Fear is critical for survival in the real world.
But too much fear can destroy someone’s life.

Early theories of emotion and fear implicate thalamic and cortical circuits.

LeDoux, 1996

- Bizarre sexual behavior.
- Oral fixation.
- Lack fear.
- Amygdala is lesioned.

Figure 3: A monkey with Kluver-Bucy syndrome has lost his natural fear of snakes.

10^{10} people on Earth
Pavlovian classical conditioning can serve as a model for fear learning.

10^{11} neurons in the human brain
Microcircuitry in the amygdala mediates fear conditioning.

Ciocchi et al, 2010

Maren & Quirk, 2004

Johansen et al, 2010

Medina et al, 2012
Human amygdala is involved in processing of fear and reward values.

- fMRI amygdala activation during CS-US pair.
- Conditioned by watching or warning of shock.
- Hippocampal lesion:
 - No explicit learning
 - But respond to CS
- Amygdala lesion:
 - No phys response
 - Recall conditioning

Fear extinction is presentation of CS repeatedly without shock US.

- How do we get rid of bad memories?
- Extinction is a new form of memory.
- Renewal: return of fear in new context.
- Reinstatement: return of fear with single shock.
- Spontaneous recovery: return of fear with passage of time.
Inhibition of central medial amygdala following extinction training.

Microcircuitry in the prefrontal cortex mediates fear extinction learning.
Effects on extinction can be during acquisition or during retention.

- Agonists of amygdala NMDARs facilitate extinction learning.
- BDNF activity required for long term extinction.
- Unlearning fear with immediate extinction or during reconsolidation.

Fear extinction circuitry may require coordination of different sites.

Stujenske et al., 2014
Question: How is fear learning modulated by different transmitter systems based on context?

- Noradrenergic system enhances fear memory (Soeter et al., 2011).
- Aversive events affect dopamine transmission (Badrinarayan et al., 2012).
- Serotonin depletion leads to attenuated fear response (Hindi et al., 2012).

Midbrain dopamine neurons may also respond to aversive signals.

Matsumoto & Hikosaka 2009

Brischoux et al., 2009
Optogenetic identification of VTA to LA and VTA to NAc dopamine projections.

Use optogenetics to identify dopamine cells, trace their projections, manipulate activity.

- TH-cre rats expressing a cre-dependent channelrhodopsin (ChR2) or halorhodopsin (NpHR) allows dopamine neurons — specific excitation in vivo.
- Virus containing ChR2 can reach terminals of transfected cells, allowing optical stimulation of their terminals at target structure to identify their projections.
- Inhibition of VTA dopamine cells during fear and reward learning using NpHR can reveal the role of dopamine neurons in appetitive and aversive learning.
Hypothesis: VTA to LA projections code for aversive prediction error.

Approach: Optogenetic manipulation of VTA dopamine cells.

- TH (red) labeling dopaminergic cells in TH-cre animals.
- GFP (green) labeling NpHR (right) and Arch (below) infected cells.
- DAPI (blue) nucleus.
Optogenetic inhibition of VTA dopamine cells during shock US presentation increases fear learning.

In collaboration with Luca Aquili

Optogenetic excitation of VTA dopamine cells during shock US does not affect fear learning.

In collaboration with Luca Aquili
Neither optogenetic inhibition during CS nor following CS alone affects fear learning.

![Graph showing freezing percentages for different conditions](image)

In collaboration with Luca Aquili

Does VTA dopamine neurons affect extinction learning?

![Dice with 'FEAR' and an 'X']

4/12/2019
Optogenetic inhibition of VTA dopamine cells during period of expected US presentation.

Extinction learning is reduced, but renewal of fear in a new context is unaffected.
Optogenetic activation of VTA dopamine cells during expected US does not affect extinction.

Extinction of fear is associated and requires BLA MAPK phosphorylation.

* p = 0.056
Optogenetic inhibition of VTA dopamine neurons during omission period of fear extinction.

A) Fear circuit

B) Extinction learning circuit

Inhibition of VTA dopamine during omissions in extinction reduces MAPK phosphorylation in mPFC (IL).

Extinction
NpHR: 53.9 cells/mm²
Extinction
YFP: 220.8 cells/mm²
Inhibition of VTA dopamine during omissions in extinction reduces MAPK phosphorylation in BLA (LA).

Extinction NpHR: 14.0 cells/mm²
Extinction YFP: 56.2 cells/mm²

What are VTA and LA cells doing during fear learning?

\[\Delta V \propto (\lambda - \Sigma V) \]

Rescorla & Wagner, 1972

Prediction error coding can explain learning in classical conditioning. Model explains phenomena such as blocking and learning asymptote.
Do VTA to LA projections code for aversive prediction error?

Prediction error coding can explain differential responses to predicted vs. unpredicted US.

\[\Delta V \propto (\lambda - \Sigma V) \]

- US only (unpredicted)
- CS + US (predicted)
VTA neurons respond to aversive outcomes and outcome contingencies.

LA pyramidal cells respond to unpredicted shocks and to prediction errors in trained animals.

\[\Delta V = \delta (\lambda - \Sigma V) \]

Learning = a difference between actual and expected.

Preliminary: 209 cells, 72 shock responsive, 24 prediction error.
Circuit model of fear and extinction learning: modulation by VTA dopamine neurons.

Midbrain dopamine neurons encode rewarding as well as aversive signals.

- Ventral Tegmental Area (VTA) dopamine neurons fire in response to rewards and cues that predict reward.
- Firing rates are proportional to predictability of cue for reward, and is thus high early in learning, and decreases as prediction error is decreased when well learned.
- Recent results show putative VTA dopamine neurons responsive to aversive events.
- Question 1: where do these dopamine neurons project?
- Question 2: how do these dopamine cells affect learning?
RIKEN Brain Science Institute Josh Johansen laboratory (Neural Circuitry of Memory).

Questions?